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ON THE CONCENTRATION FIELD OF AN ORDERLY SYSTElj 
OF REACTING PLATES DISTRIBUTED ALONG A STRM 

A. D. POLIANIN and Iu. A. SERGEEV 

The plane problem of convective diffusion in a semi-infinite ordered systemofplat- 
es over which flows lengthwise a stream of perfect liguidis considered. TheP6Clet 
number determined relative to the length of a plate is assumed high hence the 
variation of the concentration field is primarily dependent on the interaction of 
diffusion wakes and boundary layers of plates lying one after another along the 
stream /l-44/. 

The object of this work is to derive and investigate the equations that define the con- 
centration distribution at the outer boundary of each plate boundary layer. It is shown that 
in such systems the distribution of concentration in the stream core is defined byanintegral 
equation of the Volterra type with an integrable singularity. An exact solution is obtained 
in the case of a single chain of plates , and the asymptotic8 of solution away from the system 
entry is determined for a periodic system of chains parallel to each other. A method of 
successive approximations which in certain cases makes possible the determination of asymptot- 
its of the concentration field is proposed. Analysis of asymptotic8 of the exact solution 
for a single chain of plates shows that the method ofsuccessiveapproximations yieldsanexact 
value for the principal term of the asymptotic expansion. 

The proposed methods is extended to nonlinear problems and makes possible the formula- 
tion of respective eguations and boundary conditions. The flow of a viscous fluid at high 
Reynolds numbers past a periodic system of plates is investigated as an example. 

The process of convective diffusion was previously considered in /l/ and /2/ in thinly 
scattered and in concentrated lattices of reacting spheres, and in /3,4/ the diffusion to 
chains of solid reacting particles was investigated. 

1. Statement of the problem. Let us consider a system of plates of length 1 per- 
iodically distributed in a uniform stream of perfect incompressible fluid flowing in the 
lengthwise direction. The system is of periods a and b, respectively, along the Y-and 
r-axes (Fig.1). We assume that a reaction with total absorption of the substance dissolved 

in the fluid takes place at the plate surfaces. Concentration of the substance at some dis- 
tance upstream of the system intake is constant. 

The described model can be used for definingprocesses 
of diffusion or heat conduction, 
(for instance, inserts in a chemical reactor) in a station- 

10- ed potential. 

when a system of plates 

ary or fluidized layer of particles through which filters 
a stream of fluid. Insuch casethe flowfieldmaybe consider- 

L b s The convective heat transfer to the walls 
of a reactor with a stationary or fluidized layer of part- 

Fig.1 icles, and with heating or cooling elements periodically 
distributed in the walls, is another example. In thisform- 

ulation of the prcblem it is possible to simulate also heat and mass transfer systems in the 
presence of areas of corrosion on working surfaces /5/. 

At high P&let numbers at which only transverse transfer of substance in diffusion bound- 
ary layers and late wakes is significant, the distribution of concentration in the stream is 
determined by the solution of the following boundary value problem: 

LC = 0, L =a/ib-- avag (1.1) 

x==o,c=i (1.2) 
c (II + a) = c(Y) (1.3) 
Y =ma,x = kb + A, c = 0 

y = ma, x = kb + 1 + (b - l)r, a&at = 0 
(1.4) 

k = 0, 1, 2, . . .; m = 0, _tl, +2,. . .; z E [O, I] 
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where the r-coordinate is measured from the leading edge of the first plate, k is the 
Plate ordinal number; the fluid stream velocity and the coefficient of diffusion are assumed 
equal unity (which can be always achieved by a proper choice of the scale of the variable y), 
Equation (1.1) determines the principal term of the respective asymptotic expansion for the 
concentration (with respect to the high P&let number) and is valid throughoutthe flowregion, 
since for plates oriented along the stream the equations of the diffusion wake ad of the 
boundary layer are the same (the proof is similar to that in /6/). 

In the case Of a single chain of plates the periodicity condition (1.3) is replaced by 
the concentration uniformity condition 

y-+oo,c-+I (1.5) 

and the boundary condition (1.4) is specified for only one m = O(y = 0). 
Below, we assume the lengthwise period of the lattice to satisfythecondition '/' -zz 

lb-'< 1. 
For a fairly extended system of plates (/c;>l) diffusion in boundary layers of indivi- 

dual plates may result in a substantial change of concentration outside boundary layers from 
the concentration c = 1 at the system intake. Attransition from one plate to another the 
concentration changes on the outer boundary of the layer by the quantity f/T< 1. But even 
small concentration changes on sections of the order of the lattice period b result in a 
substantial concentration change at some distance from the system intake @>)I). 

The basic aim of the present work is the derivation and investigation of equations that 
define concentration distribution at the outer boundary of each plate boundary layer, when 
numerous plates (k>)i) lie within the characteristic length scale. 

2. Diffusion on a single chain and on a periodic system of plates. As in 
the analysis of viscous incompressible fluid flow over a plate at high Reynolds numbers /6/, 
it can be shown that the maximum thickness of the first plate boundary layer is 6, = 10 (P-l*) 
and that of its diffusion wake around the second plate of the chain is 6,* = T-'4, > 6,. It 
follows from this and the concentration distribution in the diffusion wake of a single plate 
that when T<i, the concentration c (x, y) in the neighborhood of the second plate, but 
outside its diffusion boundary layer, varies slowly; any of the plates has this property. 

The equation for concentration distribution outside diffusion layers of plates can be 
obtained by adding the point sources which define concentration distribution in diffusion 
wakes of plates (when T<i) and located at their centers, as was done in /l/ in the case of 
a sphere lattice. Here we propose a more general approach based on the use of the input 
equation (1.1) and the derivation of a supplementary integral boundary condition ("condition 
of conservation" of the reacting substance in a volume) for concentration. Althoughthe final 
formulas for concentration distribution obtained by the proposed here method can be obtained 
using the procedure in /l/, it naturally extends to nonlinear problems (e.g., flow of viscous 
fluid at high Reynolds numbers over plates, considered in Sect.3) and makes possible readily 
to formulate respective equations and boundary conditions (for velocity components) in the 

general case. 
To simplify reasoning we conditionally separate below the outer region 51 with large 

gradients of concentration c. Region 52 is obtained by excluding in the half-plane s>o 
of the diffusion boundary layer the parts of diffusion wakes (of length O(1)) lying immediat- 
ely behind plates, where an abrupt concentration change takes place (Fig.2). In fact 52 co- 
incides with the region of validity of representing concentration distribution in a system of 

plates by point sources /l/. We denote the 
concentration in region Q by C (s, y) . For 

I the external concentration does not 
I 

Tel 
change much over the lattice period C(x + b, 
y) - C (5, Y) = 0 (t/T) I and the basic variation 
of concentrations is due to the absorption of 
substance on the reacting plates induced by the 
diffusion wakes behind them. These wakes de- 
crease concentration at the external boundary 

Fig.2 of the next following plate boundary layer. 
Since in the outer region concentations c and C are equal, the external concentration 

C(X, y) satisfies in region 51 Eq.cl.1) and boundary conditions (1.2) and (1.5) - To complete 
the formulation of the problem of concentration C it is necessary to add one more boundary 
condition of the "law of conservation" type, which contains information on boundary condit- 
ions (1.4) which are now not satisfied for C. The necessary (additional) boundary condi- 
tions can be obtained using a reasoning of the type implicitly used in /l/ for the derivation 
of the integral equation for concentration when determining unknown coefficients that appear 
as multipliers in self-similar solutions that correspond to point sources at sphere centers. 
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To obtain the last boundary condition we integrate, as in /l/, Eq.(l.l) over the refer- 
enoe volume &,, = {[O, 21; y E IO, +a~)} (Fig.21 

rea 

1s 
’ Lcdydx=- 
00 

~I~--c(w)ldu-I- f [~],_o+o (2.1) 

0 

The integral identity (2.1) represents the law of conservation of mass of the diffus- 
ing substance in the volume &,,. If there are k plates at distance x frcm the system in- 
take, i.e. (k - 1) b < 5 < kb, then by virtue of the boundary conditions (1.4) we have the 
equality 

(2.2) 

where I,, is the total diffusion flux to the n-th plate. 
Since concentration C(z, v) varies only little over distance b in the plate neighbor- 

hood, the concentration distribution in the boundary layer of the n-th plate can be repre- 
sented as /6/ 

c,(x, y)=C,(x,O) erf - 
( ) & 

where &'=X- nb is the coordinate measured from the n-th plate leading edge. 
Calculating integral (2.2) with allowance for (2.3), we obtain 

(2.3) 

(2.4) 

where the integral is substituted for the sum, since concentration changes little over a dis- 
tance of the order of the lattice period b, i.e. C, - Cn_l = o(i). Taking into account the 
thinness of the diffusion boundary layer and formula (1.6), from (2.1) we obtain 

Consequently concentration C(x, g) satisfies in the external region Q the boundary 
value problem 

LC=O; z=o, C=l; y-+00, c+i (2.6) 

- $1 C(T, y) dy=hC(s,O) (2.7) 
0 

of which the last is obtained by differentiating Eq.(2.5). The right-hand side of that condi- 
tion represents the diffusion flux to plates per unit length of the system. 

We seek a solution of problem (2.6), (2.7) of the form 

Function (2.8) satisfies the equation and two boundary conditions (2.6) for any smooth core 
A (2) /7/. Substituting expression (2.8) into the last of boundary conditions (2.7) and in- 
tegrating with respect to y we obtain the relation 

M:(z, 0) = JGA (x) (2.9) 

Substitution of this equality into (2.8) and assuming in it y = 0 yields the equation for 
concentration C&O)= C(z) on the inner boundary of the external region P 

It should be noted that Eq.(2.10) can also be obtained by adding point sources located at 
plate centers, which specify concentration distribution in the distant region of diffusion 
wakes behind these, with subsequent substitution of an integral for such sum, as was done in 
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/l/. Equation (2.10) has the following exact solution /S/: 

G (x) = 1 :- i g (x’, n) dx’, h = an-?bl’/zb-’ , g (2, h) = - $ $- +xp (h?r) r (4 , )ilT) (2.11) 

where r('/a, z) is an incomplete gamma function. It follows from formula (2.11) that the 
asymptotics of function C(s) f or large xis of the form 

5 -+ co, C (x, 0) --t ‘Jabl-‘~q-‘:r (2.12f 

which shows that away from the chain beginning, concentration on the outer boundary of the 
diffusion boundary layer of the plate approaches zero as I-'z 
k-+=1. 

(inversely proportional to I/Z, 

Let us now consider convection diffusion in a system of recurrent platas. The problem 
was formulated in Sect.1 and is defined by Eq.(l.l) with boundary conditions (1.2)- (1.4). 

We introduce region 51 (Fig.2) and shall consider the problem of determiningtheexternal 
field of concentration C(x, y) (concentration outside the diffusion boundary layer). Here, 
as in the case of a single chain of plates, the external concentration satisfies Eq.(l,l) and 
boundary conditions (1.2) and (1.3); to obtain the last boundary condition we integrate Eq, 
(1.1) (taking into account all boundary conditions) along the contour S, = {IO,& ye IO, u/2]). 

In the integration allowance is made for the problem symmetry relative to the straight 
line y = a12 by virtue of which the equality [&.@yl,,~,= 0 is satisfied. 

Assuming that the interval fO,zf contains ii plates, we obtain the law of conservation 
of the mass of diffusing substance in the form (2.1), (2.2), but with af2 substituted for 
00 as the upper limit of integration. 

Taking into account that concentration varies only little in region G over the dist- 
ance b between adjacent plates, we conclude that the concentration distribution in the bound- 
ary layer of the n-th plate is defined by (2.3). Calculating now the last integral in (2.1) 
for k>i, we obtain the approximate equality (2.4). Taking into account (2.1) and (2.41, 
we obtain for concentration C(x, y) in the external region 52 the equality (2.5) in which 
the upper limit of integration with respect to the transverse coordinate is a/2. 

For the concentration C(x, y) in the external region inthe first quadrant X>O,Y> 
0 (C(x, y) =E C(x, -y))we finally obtain the boundary value problem 

LC = 0; 2 = 0, c = 1; C(y + a) = C(v) (2.13) 

aI2 
0 -- 
02 s 

C(2, y)dy = hC(r, 0) (2.14) 
0 

where the coefficient h is determined in formula (2.5). 
We seek a solution of problem (2.13) of the form 

(2.15) 

Function (2.15) is periodic with respect to the y-coordinate of period a, and for any 
core A(x) satisfies the equation and the first of boundary conditions (2.14). 

The substitution of expression (2.15) into the boundary condition (2.14) followed by in- 
tegration with respect to y yields the link between the core A(=} and concentation along 

the axis C(x, O), leading to formula (2.9). 
Taking this into account and making F approach zero in (2.151, we obtain for concen- 

tration on the external boundary of diffusion boundary layers of plates (at the inner bound- 
ary of region 62) the integral equation 

(2.16) 

-t-- 
@3(x) = X exp(-nmzx), C(x)=C(5,0) 

Illr--m 

where S,(x) is the theta function /9/. 
As e-+00 Eq.(2.16) reduces to Eq.(2.10) for a single chain of plates. 
Let us investigate Sq.(2.16). For the Laplace transform C(p) of concentration C(a$ = 

C(x,O) we have in conformity with the theorem on convolution we have the equation 
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C(p)=$- kc(p) 2 
m--cm 

+-exp(---l~lV3 

where, and in what follows the originals and transforms are distinguished by the arguments Z 
and p, respectively. Carrying out summation for the concentration transform on the axis, 

we obtain 

c(p)=[p+b~cth(fc~~)l-' (2.17) 

Formula (2.17) enables us to obtain asymptotics of distribution of concentration C(t) on the 
axis for large 2. When the distance a between plate chains is large, the inequality a-'< 

",< 1 
for the Laplace variable p corresponds to the intermediate asymptotics for i <x< 

. Retaining in the denominator in (2.17) the principal terms of expansion in p'la,weobtain 
the intermediate asymptotics in the form (2.12) which is the same as the asymptotic expres- 
sion for concentration along the axis of a single chain of plates. For the determination of 
intermediate asymptotics only the term hv/p(cth(l/aal/& z 1) is in this case essential in the 
denominator of formula (2.17), which corresponds to the neglect of the left-hand side of the 
input equation (2.16). 

Note that physically the intermediate asymptotics corresponds to a region fairly remote 
from the system intake, where the effect of adjacent plates of the chain does not manifest 
itself. 

For x > a' (p < u-3, taking into account that cth (afi/ 2) = 26*p-“2 (1 + a2p / 12 _I- 0 (p”)), 

we obtain from formula (2.17) the asymptotic expression 

C (2) = q exp I-2kqu%l (I+ m), q = (1 + ‘/&b)-’ (2.18) 

where a is arbitrary. 
Formula (2.18) implies that the effect of adjacent chains leads to a considerably more 

important decreaseofconcentration along the axis. Note that both terms of the denominator 
of (2.17) are essential in the derivation of the "distant" asymptotics (2.18), i.e. that both 
sidesofRq.(2.16) are of the same order of smallness. 

The used here method is readily extended to nonlinear problems and makes possible the 
formulation of respective equations and boundary conditions. As an example, we shall consid- 
er the flow of a viscous fluid at high Reynolds numbers over a periodic system of plates. 

3. Flow of viscous incompressible fluid at high Reynolds numbers past a 
periodic system of plates. Let us consider the flow of a uniform at infinity stream of 
viscous incanpessible fluid past a system of plates described in Sect.1. The Reynolds 
number of the flow past a single plate is assumed high. 

The flow field is determined by the solution of the boundary value problem for the equa- 
tion of boundary layer 

G(u) = (UV) 111 - YPU,l @/s = 0 

div u = 0; u = {ul, us} 

x = 0, 111 = u, u, = 0 

u (I, Y + a) = u (2, Y) 

x=kb-+zl, ul=O, ug=O 
y=ma, 

x=kb+ 1 $ (b-Z)z, au&‘s=O, us=0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(in this case the boundary layer and the wake equations coincide (Fig.1). In these equations 

4 and IC, are the longitudinal and transverse velocity components, respectively, v is the 
kinematic viscosity of the fluid, and u is the stream velocity at infinity. 

To obtzi%n the distribution of velocities v1 and v, in the external region we use, as in 
Sect.2, the integral law of maQentum conservation which is obtained by integrating Eq.(3.1) 
of motion over the reference volume 
For this formula 

SW, taking into account the equation of continuity. 

%k = opn'l' (vz)-'l', u = 0,332 (y--P 0) (3.5) 

for the distribution of the longitudinal velocity component in the boundary layer of the k- 
th plate /6/ is to be used (rik are velocity canponents in the 0 region). 

The procedure for obtaining equations for the external region D is the same as in Sect. 
2, and yields the following boundary value problem: 
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the 

G (v) = 0, divv = 0; v = {u,, u2} 

5 = 0, VI = u, u, = 0; v (y + a) = v (y) 

a, 2 
a -- 

c al . VI2 (2, y) dy = u$ (J, 0) 

L3.61 

(3.7) 

y = 0, up = 0; 0 = 2av-‘, z~‘lzb-1 

In the case of a single chain of plates the condition of periodicity with 
transverse coordinate is replaced by the homogeneity condition 

respect to 

y+m, Ul”U, u,=o (3.8) 

with parameter a appearing in the upper limit of integration in the boundary condition (3.7) 
for u, assumed equal infinity. 

4. The method of successive approximations, It will be shown here that in cer- 
tain cases the use of the method of successive approximations makes it possible to determine 
the asymptotics for the distribution of concentration C(x,O) (or the longitudinal velocity 
component) at the external diffusion (hydrodynamic) boundary layer of a plate, as Z-900 
directly from the boundary value problems (2.6), (2.7) and (2.131, (2.14) (or (2.16)) with- 
out using Eqs.(2.10) and (2.16). 

Let us consider the boundary value problem for the unknown function 1~ in the region 
r>,O,Ody <a (where a is arbitrary and in particular a = M) 

Au,=0 
(4.1) 

w (Pi) = wi, i = 1, 2 (4.2) 
lu (z, 0) = F (w) (4.3 

where A is some (nonlinear) parabolic operator and (4.2) and (4.3) are boundary conditions 
for Eq.(4.1). For instance, A= L can be defined in the form (1.1) with boundary condi- 
tions defined by (1.2) and (1.3) or by (1.3) and (1.5); (4.3) is a complex boundary condi- 
tion of the form (2.7) or (2.141, it may even have a more complex structure, and can be 
nonlinear, as in (3.7). 

Let us assume that 
lim w (2, 0) = 0 
X--r_ (4.4) 

is known with respect to problem (4.1)- (4.3) (for instance from the physical formulation of 
the problem) and it is required to determine the first term of the asymptotic expansion of 
w (~~0) as Zdcu. For this we consider the auxilliary problem for function w* 

AU,?* = 0; W* (ri) = Wi; W* (2, 0) = 0 (4.5) 

This problem differs from the input problem (4-l)- (4.3) by the substitution of the simplest 
asymptotic boundary condition (4.4) for the complex boundary condition (4.3). 

The solution of problem (4.5) is usually constructed in a simpler manner than that of 
problem (4.1)- (4.3), and in many casescan be obtained in explicit analytic form. The prin- 
cipal term of asymptotic expansion for ~(2,0) as 5 + DO 

Z-900, W (I, 0) = F (10* (x, Y)) (4.6) 

The indicated procedure ofderivation of the principal term of the asymptotics of problem 
(4.1)- (4.3) as X+M , can in certain cases fully substantiated. 

The formulation of problem (2.6), (2.7) of diffusion on a chain of reacting plates and 
the method of obtaining equations for concentration on the external boundary of diffusion 
boundary layers of plates (2.1) imply that the determination of asymptotics of concentration 
C (x) using formulas (4.6) exactly corresponds to the asymptotics of solutions of curtailed 

integral equations (2.10) (in whose left-hand side C(x) =O is set). On the other hand, 

the curtailed equation as z-+co yields correct asymptotics for the input equations in the 
case of many integral equations. 

In the case of solution W(Z)= w&o) of the integral equation of the form 

COW(I) = i- A, s T WV (x’) dx’ , 

o (5 - z’)b 
(I., > 0, v > 0; 0 < B < 1) (4.7) 

in conformity with the procedure in /lo/, where the case of v>1,fi=V2 was considered, it 
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fs possible to show that the following limit equality applies: 

lim r(z, 1) w-1 (2, 0) = i 
r-00 

Setting in Eq.(4.7) 0~l,~=i,11+=1LR~~~,~=~~~, we obtain Eq.(Z.lOf. A direct substituticm 
of the asymptotics for C (2.0) , as z-00, defined by formula (2.121 shows thatitisanexact 
solution of the curtailed equation (2.10) (and corresponds to the zero value of parameter o 
in (4.7). 

Introduction of the auxilliary function and derivation of asymptoticsoftheinputproblem, 
using formula (4.6) may be treated as a certain modification of the method of successive ap- 
proximations at whose first stage a solution of W, which is simpler than the input problem 
(4.6) followed by its substitution into the right-hand side of the complex input boundary con- 
dition (4.3) and separation in P(w*) the principal term of asymptotic expansion as z-00. 

Let us illustrate the use of formula (4.6) on problems (2.61, (2.7) and (3.6)- (3.8). 

1'. In the first case solution of the auxilliary problem for concentration by virtue of 
the last simplified boundary condition (4.5) 

C* (2.0) = 0 

shows that the auxilliary function c.(z,y) is the self-similar solution of 
fusion on semi-infinite plate under conditions of total absorption at its 
C. we have 

c* (2. v) = erf (vl2V;j 

Substitution of this expression into formula (4.6) with the explicit 
P (2.7) taken into account yields the equality 

where the parameter h has been defined in (2.5). This formula coincides 
ptotics (2.12) obtained fran the exact solutton of problem (2.11). 

Rmrk. Ihe integral in formulas (2.7) and (4.6) can be calculated 
taking into account the explicit form of the auxilliary function (4.9) by 

(4.8) 

the problem of dif- 
surface. Hence for 

(4.9) 

form of functional 

exactly with asym- 

more simply without 
using the equality 

that follows from the law of conservation of substance for C* obtained, for example, fromthe 
integral identity (2.1) by the substitution of cI fox c . Using the integral identity (of 
type (2.1)) we calculate the right-hand side of (4.6) in a similar manner also in the general 
case. 

2'. In the second case solution +(z,O)= 0 for the flow field in a system of plates 
shows, by virtue of condition (4.51, that the auxillsry function w~.(z,v) is a self-similar 
solution of the boundary value problem of flow of viscous incompressible fluid over a semi- 
infinite plate /6/. For ul* we consequently have 

V-+0, I+* (z, I) = a&" +)-'-l/l (4.10) 

It can be shown simi.larly to lo that the integral in the right-hand side of boundary con- 
dition (3.7) is determined by the quantity [0~.~la&~ which with allowance for (4.10) results 
in the following asymptotic law of dsmping of the longitudinal velocity component away from 
the system intake: 

t - caz, v, (z, 0) - ~=~8~i-il~b'fa~-=~~ (4.11) 

which shows that for a chain of plates the damping of velocity is slower than the correspond- 
ing rate of concentration decrease (2.121, as z-00. 

Formula (4.11) must obviously be treated with some circumspection, since it cannot be 
proved by a direct test similar to that applied in the case of convective ~ff~ioninach~n 
of plates. 

The authors thank Iu. P. Gupalo and 1% S. Riazantsev for helpful discussions. 
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